Fusion and Mining Spatial Data in Cyber-physical space with Phenomena Dynamic Logic

نویسندگان

  • Boris Kovalerchuk
  • Leonid Perlovsky
چکیده

Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. The Neural Modeling (NMF) Fields theory and Phenomena Dynamic Logic (PDL) address these challenges in a non-traditional way. The main idea behind its success is matching the levels of uncertainty of the problem/model and the levels of uncertainty of the evaluation criterion used to identify the model. When a model becomes more certain then the evaluation criterion is also adjusted dynamically to match the adjusted model. This process mimics processes of the mind and natural evolution at the neural level. This paper describes the generalization of P-DL for data fusion and mining of heterogeneous spatial objects in cyberphysical space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

Development of a Spatial Model for Locating Optimal Areas of Sustainable Physical Development Using Fuzzy Logic (Case Study: Hamadan City)

Today, physical development and population growth in Iranian cities, like other developing countries, is on the rise. One of the main problems in the urban area is the lack of attention to the influential parameters in the sustainable urban development.  Various factors, such as natural phenomena, play a role in the urban development, and the effective parameters must be considered for locatin...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

Modeling spatial uncertainties in geospatial data fusion and mining

Geospatial data analysis relies on Spatial Data Fusion and Mining (SDFM), which heavily depend on topology and geometry of spatial objects. Capturing and representing geometric characteristics such as orientation, shape, proximity, similarity, and their measurement are of the highest interest in SDFM. Representation of uncertain and dynamically changing topological structure of spatial objects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009